人工智能AI技术早已深入到人们生活的每一个角落,君不见AI孙燕姿的歌声此起彼伏,不绝于耳,但并不是每个人都拥有一块N卡,没有GPU的日子总是不好过的,但是没关系,山人有妙计,本次我们基于Google的Colab免费云端服务器来搭建深度学习环境,制作AI特朗普,让他高唱《国际歌》。
Colab(全名Colaboratory ),它是Google公司的一款基于云端的基础免费服务器产品,可以在B端,也就是浏览器里面编写和执行Python代码,非常方便,贴心的是,Colab可以给用户分配免费的GPU进行使用,对于没有N卡的朋友来说,这已经远远超出了业界良心的范畴,简直就是在做慈善事业。
Colab是基于Google云盘的产品,我们可以将深度学习的Python脚本、训练好的模型、以及训练集等数据直接存放在云盘中,然后通过Colab执行即可。
【资料图】
首先访问Google云盘:drive.google.com
随后点击新建,选择关联更多应用:
接着安装Colab即可:
至此,云盘和Colab就关联好了,现在我们可以新建一个脚本文件my_sovits.ipynb文件,键入代码:
hello colab
随后,按快捷键 ctrl + 回车,即可运行代码:
这里需要注意的是,Colab使用的是基于Jupyter Notebook的ipynb格式的Python代码。
Jupyter Notebook是以网页的形式打开,可以在网页页面中直接编写代码和运行代码,代码的运行结果也会直接在代码块下显示。如在编程过程中需要编写说明文档,可在同一个页面中直接编写,便于作及时的说明和解释。
随后设置一下显卡类型:
接着运行命令,查看GPU版本:
!/usr/local/cuda/bin/nvcc --version!nvidia-smi
程序返回:
nvcc: NVIDIA (R) Cuda compiler driverCopyright (c) 2005-2022 NVIDIA CorporationBuilt on Wed_Sep_21_10:33:58_PDT_2022Cuda compilation tools, release 11.8, V11.8.89Build cuda_11.8.r11.8/compiler.31833905_0Tue May 16 04:49:23 2023 +-----------------------------------------------------------------------------+| NVIDIA-SMI 525.85.12 Driver Version: 525.85.12 CUDA Version: 12.0 ||-------------------------------+----------------------+----------------------+| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC || Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. || | | MIG M. ||===============================+======================+======================|| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 || N/A 65C P8 13W / 70W | 0MiB / 15360MiB | 0% Default || | | N/A |+-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+| Processes: || GPU GI CI PID Type Process name GPU Memory || ID ID Usage ||=============================================================================|| No running processes found |+-----------------------------------------------------------------------------+
这里建议选择Tesla T4的显卡类型,性能更突出。
至此Colab就配置好了。
下面我们配置so-vits环境,可以通过pip命令安装一些基础依赖:
!pip install pyworld==0.3.2!pip install numpy==1.23.5
注意jupyter语言是通过叹号来运行命令。
注意,由于不是本地环境,有的时候colab会提醒:
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/Collecting numpy==1.23.5 Downloading numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.1/17.1 MB 80.1 MB/s eta 0:00:00Installing collected packages: numpy Attempting uninstall: numpy Found existing installation: numpy 1.22.4 Uninstalling numpy-1.22.4: Successfully uninstalled numpy-1.22.4Successfully installed numpy-1.23.5WARNING: The following packages were previously imported in this runtime: [numpy]You must restart the runtime in order to use newly installed versions.
此时numpy库需要重启runtime才可以导入操作。
重启runtime后,需要再重新安装一次,直到系统提示依赖已经存在:
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/Requirement already satisfied: numpy==1.23.5 in /usr/local/lib/python3.10/dist-packages (1.23.5)
随后,克隆so-vits项目,并且安装项目的依赖:
import osimport glob!git clone https://github.com/effusiveperiscope/so-vits-svc -b eff-4.0os.chdir("/content/so-vits-svc")# install requirements one-at-a-time to ignore exceptions!cat requirements.txt | xargs -n 1 pip install --extra-index-url https://download.pytorch.org/whl/cu117!pip install praat-parselmouth!pip install ipywidgets!pip install huggingface_hub!pip install pip==23.0.1 # fix pip version for fairseq install!pip install fairseq==0.12.2!jupyter nbextension enable --py widgetsnbextensionexisting_files = glob.glob("/content/**/*.*", recursive=True)!pip install --upgrade protobuf==3.9.2!pip uninstall -y tensorflow!pip install tensorflow==2.11.0
安装好依赖之后,定义一些前置工具方法:
os.chdir("/content/so-vits-svc") # force working-directory to so-vits-svc - this line is just for safety and is probably not requiredimport tarfileimport osfrom zipfile import ZipFile# taken from https://github.com/CookiePPP/cookietts/blob/master/CookieTTS/utils/dataset/extract_unknown.pydef extract(path): if path.endswith(\".zip\"): with ZipFile(path, "r") as zipObj: zipObj.extractall(os.path.split(path)[0]) elif path.endswith(\".tar.bz2\"): tar = tarfile.open(path, \"r:bz2\") tar.extractall(os.path.split(path)[0]) tar.close() elif path.endswith(\".tar.gz\"): tar = tarfile.open(path, \"r:gz\") tar.extractall(os.path.split(path)[0]) tar.close() elif path.endswith(\".tar\"): tar = tarfile.open(path, \"r:\") tar.extractall(os.path.split(path)[0]) tar.close() elif path.endswith(\".7z\"): import py7zr archive = py7zr.SevenZipFile(path, mode="r") archive.extractall(path=os.path.split(path)[0]) archive.close() else: raise NotImplementedError(f\"{path} extension not implemented.\")# taken from https://github.com/CookiePPP/cookietts/tree/master/CookieTTS/_0_download/scripts# megatools download urlswin64_url = \"https://megatools.megous.com/builds/builds/megatools-1.11.1.20230212-win64.zip\"win32_url = \"https://megatools.megous.com/builds/builds/megatools-1.11.1.20230212-win32.zip\"linux_url = \"https://megatools.megous.com/builds/builds/megatools-1.11.1.20230212-linux-x86_64.tar.gz\"# download megatoolsfrom sys import platformimport osimport urllib.requestimport subprocessfrom time import sleepif platform == \"linux\" or platform == \"linux2\": dl_url = linux_urlelif platform == \"darwin\": raise NotImplementedError("MacOS not supported.")elif platform == \"win32\": dl_url = win64_urlelse: raise NotImplementedError ("Unknown Operating System.")dlname = dl_url.split(\"/\")[-1]if dlname.endswith(\".zip\"): binary_folder = dlname[:-4] # remove .zipelif dlname.endswith(\".tar.gz\"): binary_folder = dlname[:-7] # remove .tar.gzelse: raise NameError("downloaded megatools has unknown archive file extension!")if not os.path.exists(binary_folder): print("\"megatools\" not found. Downloading...") if not os.path.exists(dlname): urllib.request.urlretrieve(dl_url, dlname) assert os.path.exists(dlname), "failed to download." extract(dlname) sleep(0.10) os.unlink(dlname) print(\"Done!\")binary_folder = os.path.abspath(binary_folder)def megadown(download_link, filename=".", verbose=False): \"\"\"Use megatools binary executable to download files and folders from MEGA.nz .\"\"\" filename = " --path \""+os.path.abspath(filename)+"\"" if filename else \"\" wd_old = os.getcwd() os.chdir(binary_folder) try: if platform == \"linux\" or platform == \"linux2\": subprocess.call(f"./megatools dl{filename}{\" --debug http\" if verbose else \"\"} {download_link}", shell=True) elif platform == \"win32\": subprocess.call(f"megatools.exe dl{filename}{\" --debug http\" if verbose else \"\"} {download_link}", shell=True) except: os.chdir(wd_old) # don"t let user stop download without going back to correct directory first raise os.chdir(wd_old) return filenameimport urllib.requestfrom tqdm import tqdmimport gdownfrom os.path import existsdef request_url_with_progress_bar(url, filename): class DownloadProgressBar(tqdm): def update_to(self, b=1, bsize=1, tsize=None): if tsize is not None: self.total = tsize self.update(b * bsize - self.n) def download_url(url, filename): with DownloadProgressBar(unit="B", unit_scale=True, miniters=1, desc=url.split("/")[-1]) as t: filename, headers = urllib.request.urlretrieve(url, filename=filename, reporthook=t.update_to) print(\"Downloaded to \"+filename) download_url(url, filename)def download(urls, dataset="", filenames=None, force_dl=False, username="", password="", auth_needed=False): assert filenames is None or len(urls) == len(filenames), f\"number of urls does not match filenames. Expected {len(filenames)} urls, containing the files listed below.
{filenames}\" assert not auth_needed or (len(username) and len(password)), f\"username and password needed for {dataset} Dataset\" if filenames is None: filenames = [None,]*len(urls) for i, (url, filename) in enumerate(zip(urls, filenames)): print(f\"Downloading File from {url}\") #if filename is None: # filename = url.split(\"/\")[-1] if filename and (not force_dl) and exists(filename): print(f\"{filename} Already Exists, Skipping.\") continue if "drive.google.com" in url: assert "https://drive.google.com/uc?id=" in url, "Google Drive links should follow the format \"https://drive.google.com/uc?id=1eQAnaoDBGQZldPVk-nzgYzRbcPSmnpv6\".
Where id=XXXXXXXXXXXXXXXXX is the Google Drive Share ID." gdown.download(url, filename, quiet=False) elif "mega.nz" in url: megadown(url, filename) else: #urllib.request.urlretrieve(url, filename=filename) # no progress bar request_url_with_progress_bar(url, filename) # with progress barimport huggingface_hubimport osimport shutilclass HFModels: def __init__(self, repo = \"therealvul/so-vits-svc-4.0\", model_dir = \"hf_vul_models\"): self.model_repo = huggingface_hub.Repository(local_dir=model_dir, clone_from=repo, skip_lfs_files=True) self.repo = repo self.model_dir = model_dir self.model_folders = os.listdir(model_dir) self.model_folders.remove(".git") self.model_folders.remove(".gitattributes") def list_models(self): return self.model_folders # Downloads model; # copies config to target_dir and moves model to target_dir def download_model(self, model_name, target_dir): if not model_name in self.model_folders: raise Exception(model_name + \" not found\") model_dir = self.model_dir charpath = os.path.join(model_dir,model_name) gen_pt = next(x for x in os.listdir(charpath) if x.startswith(\"G_\")) cfg = next(x for x in os.listdir(charpath) if x.endswith(\"json\")) try: clust = next(x for x in os.listdir(charpath) if x.endswith(\"pt\")) except StopIteration as e: print(\"Note - no cluster model for \"+model_name) clust = None if not os.path.exists(target_dir): os.makedirs(target_dir, exist_ok=True) gen_dir = huggingface_hub.hf_hub_download(repo_id = self.repo, filename = model_name + \"/\" + gen_pt) # this is a symlink if clust is not None: clust_dir = huggingface_hub.hf_hub_download(repo_id = self.repo, filename = model_name + \"/\" + clust) # this is a symlink shutil.move(os.path.realpath(clust_dir), os.path.join(target_dir, clust)) clust_out = os.path.join(target_dir, clust) else: clust_out = None shutil.copy(os.path.join(charpath,cfg),os.path.join(target_dir, cfg)) shutil.move(os.path.realpath(gen_dir), os.path.join(target_dir, gen_pt)) return {\"config_path\": os.path.join(target_dir,cfg), \"generator_path\": os.path.join(target_dir,gen_pt), \"cluster_path\": clust_out}# Example usage# vul_models = HFModels()# print(vul_models.list_models())# print(\"Applejack (singing)\" in vul_models.list_models())# vul_models.download_model(\"Applejack (singing)\",\"models/Applejack (singing)\") print(\"Finished!\")
这些方法可以帮助我们下载、解压和加载模型。
接着将特朗普的音色模型和配置文件进行下载,下载地址是:
https://huggingface.co/Nardicality/so-vits-svc-4.0-models/tree/main/Trump18.5k
随后模型文件放到项目的models文件夹,配置文件则放入config文件夹。
接着将需要转换的歌曲上传到和项目平行的目录中。
运行代码:
import osimport globimport jsonimport copyimport loggingimport iofrom ipywidgets import widgetsfrom pathlib import Pathfrom IPython.display import Audio, displayos.chdir("/content/so-vits-svc")import torchfrom inference import infer_toolfrom inference import slicerfrom inference.infer_tool import Svcimport soundfileimport numpy as npMODELS_DIR = \"models\"def get_speakers(): speakers = [] for _,dirs,_ in os.walk(MODELS_DIR): for folder in dirs: cur_speaker = {} # Look for G_****.pth g = glob.glob(os.path.join(MODELS_DIR,folder,"G_*.pth")) if not len(g): print(\"Skipping \"+folder+\", no G_*.pth\") continue cur_speaker[\"model_path\"] = g[0] cur_speaker[\"model_folder\"] = folder # Look for *.pt (clustering model) clst = glob.glob(os.path.join(MODELS_DIR,folder,"*.pt")) if not len(clst): print(\"Note: No clustering model found for \"+folder) cur_speaker[\"cluster_path\"] = \"\" else: cur_speaker[\"cluster_path\"] = clst[0] # Look for config.json cfg = glob.glob(os.path.join(MODELS_DIR,folder,"*.json")) if not len(cfg): print(\"Skipping \"+folder+\", no config json\") continue cur_speaker[\"cfg_path\"] = cfg[0] with open(cur_speaker[\"cfg_path\"]) as f: try: cfg_json = json.loads(f.read()) except Exception as e: print(\"Malformed config json in \"+folder) for name, i in cfg_json[\"spk\"].items(): cur_speaker[\"name\"] = name cur_speaker[\"id\"] = i if not name.startswith("."): speakers.append(copy.copy(cur_speaker)) return sorted(speakers, key=lambda x:x[\"name\"].lower())logging.getLogger("numba").setLevel(logging.WARNING)chunks_dict = infer_tool.read_temp(\"inference/chunks_temp.json\")existing_files = []slice_db = -40wav_format = "wav"class InferenceGui(): def __init__(self): self.speakers = get_speakers() self.speaker_list = [x[\"name\"] for x in self.speakers] self.speaker_box = widgets.Dropdown( options = self.speaker_list ) display(self.speaker_box) def convert_cb(btn): self.convert() def clean_cb(btn): self.clean() self.convert_btn = widgets.Button(description=\"Convert\") self.convert_btn.on_click(convert_cb) self.clean_btn = widgets.Button(description=\"Delete all audio files\") self.clean_btn.on_click(clean_cb) self.trans_tx = widgets.IntText(value=0, description="Transpose") self.cluster_ratio_tx = widgets.FloatText(value=0.0, description="Clustering Ratio") self.noise_scale_tx = widgets.FloatText(value=0.4, description="Noise Scale") self.auto_pitch_ck = widgets.Checkbox(value=False, description= "Auto pitch f0 (do not use for singing)") display(self.trans_tx) display(self.cluster_ratio_tx) display(self.noise_scale_tx) display(self.auto_pitch_ck) display(self.convert_btn) display(self.clean_btn) def convert(self): trans = int(self.trans_tx.value) speaker = next(x for x in self.speakers if x[\"name\"] == self.speaker_box.value) spkpth2 = os.path.join(os.getcwd(),speaker[\"model_path\"]) print(spkpth2) print(os.path.exists(spkpth2)) svc_model = Svc(speaker[\"model_path\"], speaker[\"cfg_path\"], cluster_model_path=speaker[\"cluster_path\"]) input_filepaths = [f for f in glob.glob("/content/**/*.*", recursive=True) if f not in existing_files and any(f.endswith(ex) for ex in [".wav",".flac",".mp3",".ogg",".opus"])] for name in input_filepaths: print(\"Converting \"+os.path.split(name)[-1]) infer_tool.format_wav(name) wav_path = str(Path(name).with_suffix(".wav")) wav_name = Path(name).stem chunks = slicer.cut(wav_path, db_thresh=slice_db) audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks) audio = [] for (slice_tag, data) in audio_data: print(f"#=====segment start, " f"{round(len(data)/audio_sr, 3)}s======") length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample)) if slice_tag: print("jump empty segment") _audio = np.zeros(length) else: # Padding \"fix\" for noise pad_len = int(audio_sr * 0.5) data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])]) raw_path = io.BytesIO() soundfile.write(raw_path, data, audio_sr, format=\"wav\") raw_path.seek(0) _cluster_ratio = 0.0 if speaker[\"cluster_path\"] != \"\": _cluster_ratio = float(self.cluster_ratio_tx.value) out_audio, out_sr = svc_model.infer( speaker[\"name\"], trans, raw_path, cluster_infer_ratio = _cluster_ratio, auto_predict_f0 = bool(self.auto_pitch_ck.value), noice_scale = float(self.noise_scale_tx.value)) _audio = out_audio.cpu().numpy() pad_len = int(svc_model.target_sample * 0.5) _audio = _audio[pad_len:-pad_len] audio.extend(list(infer_tool.pad_array(_audio, length))) res_path = os.path.join("/content/", f"{wav_name}_{trans}_key_" f"{speaker[\"name\"]}.{wav_format}") soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format) display(Audio(res_path, autoplay=True)) # display audio file pass def clean(self): input_filepaths = [f for f in glob.glob("/content/**/*.*", recursive=True) if f not in existing_files and any(f.endswith(ex) for ex in [".wav",".flac",".mp3",".ogg",".opus"])] for f in input_filepaths: os.remove(f)inference_gui = InferenceGui()
此时系统会自动在根目录,也就是content下寻找音乐文件,包含但不限于wav、flac、mp3等等,随后根据下载的模型进行推理,推理之前会自动对文件进行背景音分离以及降噪和切片等操作。
推理结束之后,会自动播放转换后的歌曲。
如果是刚开始使用Colab,默认分配的显存是15G左右,完全可以胜任大多数训练和推理任务,但是如果经常用它挂机运算,能分配到的显卡配置就会渐进式地降低,如果需要长时间并且相对稳定的GPU资源,还是需要付费订阅Colab pro服务,另外Google云盘的免费使用空间也是15G,如果模型下多了,导致云盘空间不足,运行代码也会报错,所以最好定期清理Google云盘,以此保证深度学习任务的正常运行。
标签: